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It is shown that stationary vortex structures can be excited in a ferrite film, in the important centimeter and
millimeter wavelength ranges. It is shown that both linear and nonlinear structures can be excited using a
three-beam interaction created with circular antennas. These give rise to a special phase distribution created by
linear and nonlinear mixing. An interesting set of three clockwise rotating vortices joined by one counter-
rotating one presents itself in the linear regime: a scenario that is only qualitatively changed by the onset of
nonlinearity. It is pointed out that control of the vortex structure, through parametric coupling, based upon a
microwave resonator, is possible and that there are many interesting possibilities for applications.
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I. INTRODUCTION

The recognition that vortices are rather important mani-
festations of optical phase singularities has opened up a new
frontier in optics. These “swirling” entities can, in principle,
be used to carry data and point to a new era for communi-
cations. While electromagnetic vortices are attractive for
modern optical applications, it should be noted that vortices,
in general, are a common phenomenon and have been ob-
served in both water and the atmosphere for hundreds of
years. They are a common occurrence in plasma and atmo-
spheric science, and striking examples include the behavior
of Rossbyf1g and Alfvén wavesf2g. Even so, it is only in
recent times that the wave field structure has been under-
stood properly, from an electromagnetic point of view, and
the full generic mathematical properties have been devel-
oped. Experimentally, vortices in liquidsf3g, space plasmas
f4g, and the atmospheref5g have been thoroughly investi-
gated but it is the recent studies, especially in nonlinear op-
tics, that have stimulated an almost explosive development,
in both theoretical and experimental contributionsf6,7g. This
work builds upon the pioneering work of Nye and Berryf8g.

The successes of optical vortex theory and experiment
have an importance that goes far beyond the boundaries of
high frequency optics because the generic ideas ought to be
applicable to magnetostatic waves and should impact upon
quasioptical microwave and millimeter-wave systems. The
latter are of increasing importance in surveillance utiliza-
tions, so any work in this area is likely to generate many
applications. Up to now, however, no arrangements have
been designed to excite vortices in the microwave or milli-

meter frequency range, even though the creation of a “vortex
antenna” in the microwave and millimeter-wave ranges
would be very important.

This paper addresses how this important step can be
taken, by investigating phase singularities in forward volume
magnetostatic wavessFVMSW’sd f9g. The starting point is
the famous Nye and Berryf8g definition, which states that a
phase singularity in space occurs where the real and imagi-
nary parts of the wave field vanish simultaneously, i.e., for a
scalar wave field, represented by the complex functionF, a
phase singularity occurs whenever

Fr = 0, Fi = 0. s1ad

HereFr andFi are the real and imaginary parts, respectively,
and the phaseF is defined through

tansFd =
Fi

Fr
. s1bd

Obviously, F is indeterminate, whenever Eq.s1ad is satis-
fied; hence the term “singularity.” Actually, this singularity
may be associated with either an edge or a screw dislocation
and it is the latter that characterizes vortices, which will be
addressed here. The presence of a vortex means that the line
integral of the spatial gradient of the phase, taken around the
vortex center, or line, is some multiple ofp, i.e.,

R s¹W Fddl = 2np, s2ad

in which n=1,2,… is a positive integer, proportional to
what has become known as the “topological charge.” Ifn
=0 then a dipole vortex structure is said to exist.

The Poynting vector for the magnetostatic waves used in
this paper isf10g
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PW =
c

8p
ReSw

]bW*

]t
D s2bd

wherew andbW are the magnetostatic potential and the mag-
netic induction, respectively. If a singularity like a vortex is
present then the Poynting vector rotates around the “vortex
center,” which is a point in the two-dimensional case and an
axis in the three-dimensional case. The surface of constant
phase associated with a screw dislocation is helicoidal, so
that the Poynting vector, which is directed along the normal,
spirals about the propagation direction.

In the magnetostatic regime of a ferrite material

hW = − ¹W w, s2cd

wherehW is the magnetic field and there is a potential carried
by a magnetostatic wave of the form

hw = uwuexpfiFg s2dd

whereF is the phase and the amplitude isw.
The scalar functionw andhZ, the component of the mag-

netic field normal to the surface of the ferrite film, sketched
in Fig. 1, both satisfy conditionss1d and s2d, for nÞ0. On
the other hand, the tangential components of the magnetic
field h, lying in the OXY plane of the ferrite film, satisfy
conditionss1d and s2d with n=0.

II. CIRCULAR ANTENNA EXCITATION OF LINEAR
FORWARD VOLUME MAGNETOSTATIC WAVES

The geometry for forward volume magnetostatic waves
and a sketch of the excitation arrangement are shown in Figs.
1 and 2. A linear FVMSW propagates in a ferrite film along
the directionY, normal to an applied magnetic field that is
directed along theZ axis. The magnetostatic potential and
field components are proportional to expfisvtdg, wherev is
the angular frequency. The field structure and dispersion re-

lation are determined through the equationf9,10g

divbW = fmswXX + wYYd + wZZg = 0 s3d

where

bX = − smwX − imawYd, bY = − smwY − imawXd, bZ = wZ

s4ad

inside the ferrite film, and

divbW = − swXX + wYY+ wZZd s4bd

outside the ferrite film. The quantitiesm andma are compo-
nents of the permittivity tensor,

m =
v'

2 − v2

vH
2 − v2 , ma =

vvM

vH
2 − v2 , s4cd

in terms of the definitions vHÞ ugusH0−4pM0d ,vM

Þ ugu4pM0, andv'
2 =vHsvH+vMd, in which H0 and 4pM0

are the bias externally applied magnetic field and the satura-
tion magnetization of the ferrite film, respectively.g is called
the gyromagnetic ratio. The tangential components of mag-
netic field wX,Y and the normal component of magnetic in-
ductionbZ are continuous at the ferrite film boundaries. The
latter are located atZ= ±L /2, and the shape of the funda-
mental mode of the magnetostatic potentialf9g is

w = 5 cossÎ− mukuZd

cossÎ− mukuL/2d
, uZu ø L/2

e−ukuZ, uZu . L/2
6 3 FsX,Ydeivt

; fzszdFsX,Ydeivt, s5ad

wherek is determined from the dispersion equation

FIG. 1. Forward volume magnetostatic wave propagating in nor-
mally magnetized ferrite film.L is the width of the film,k is the
wave number, andH0 is the applied magnetic field.

FIG. 2. Excitation of three waves by plane antennasssolid line
sectionsB1O1C1, A2O2C2, and A3O3B3d, or by arc antennassarcs
B1C1, A2C2, andA3B3 of a circle aroundO shown as dashed lines;
these arcs are not shown to scale for the convenience of displaying
the geometrical calculationsd. Circular antennas are placed at 2p /3
intervals around the center atO.
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tansÎ− mkL/2d =
1

Î− m
. s5bd

Hence the equation forF is

]2F

]X2 +
]2F

]Y2 + k2F = 0. s5cd

For an excitation of a forward volume magnetostatic wave
by the kind of circular antennas shown in Fig. 2, the solu-
tions are complicated by the cylindrical geometry. In Fig. 2,
circular antennae are placed at 2p /3 intervals around the
center atO. The distances from the center to the chords of
these arcs are labeledOOi si =1,2,3d. The chords are seg-
ments of the triangleABC. When excitation of the FVMSWs
by arc antennas is considered, the geometrical optics is used
to “transform or recalculate” the boundary conditions from
the arcs to “effective straight line antennas”ssee the end of
Sec. IIId. The length of the sectionX1X0 is found as follows.
uO1X1u=x1, wherex1 is the coordinate of the pointX1 at the
sectionO1C1. The radius of the arcB1C1 is r = uOX0u= uOB1u;
uOO1u=Îr2−D2; uOX1u=ÎuOO1u2+ uO1X1u2=ÎuOO1u2+x1

2

=Îr2−D2+x1
2. Therefore

uX1X0u = uOX0u − uOX1u = r − Îr2 − D2 + x1
2 <

D2 − x1
2

r
. s6d

To be specific, only solutions with finite values of magneto-
static potential in the center of the circular antenna need to
be considered. Hence,w andFsr ,ud are finite, atr =0, where
sr ,ud are cylindrical coordinates, with the origin coinciding
with the center of the circular microstrip antenna. The Poyn-
ting vector in this system of coordinates has the components

Pr = −
c

8p
ReFivwSima

1

r

]wp

]u
+ m

]wp

]r
DG ,

Pu = −
c

8p
ReFivwS− ima

]wp

]r
+ m

1

r

]wp

]u
DG . s7d

If the radius of the microstrip antenna isr0, then the magne-
tostatic potential is determined by the additional boundary
condition

Fsr0,ud = Ceiu, s8d

whereC is a real constant. The solution of Eq.s5cd is, there-
fore,

Fsr,ud = Ceiu J1skrd
J1skr0d

, s9d

from which it is clear thatFs0,ud=0 and a property associ-
ated with a vortex structure is guaranteed for FVMSWs ex-
cited by the circular antenna. Contour integration of the
phase along a circular path around the phase defect atr =0
leads torLdF=e0+

2pdu=2p, with the conclusion thatn=1 and
that the topological charge is 1. Although the field is deter-
mined by means of a single, scalar, magnetic potential func-
tion, it is also interesting to approach the investigation of the
topological structure through the components of the mag-

netic field vector. The latter, for points on a circle of radius
r =r, is

uhW uZ=L/2 = − u¹W wuZ=L/2

= eWZhZ + eWrhr + eWwhWw

= eWZkCeiu J1skrd
J1skr0d

+ eWrkCiu J18skrd
J1skr0d

+ eWu

1

r
Ceiu J1skrd

J1skr0d
s10d

where the common multipliereivt is omitted.
It is interesting that, although the real and imaginary parts

of the field componentshZ,hu vanish at the center of the
circle and lead to the same topological structure, the compo-
nent hr does not satisfy the condition of vanishing at the
origin. Further confirmation of the presence of a vortex
structure comes from the behavior of the Poynting vector,
which rotates around the center. In fact, the only nonzero
component of the Poynting vector is

Pu =
c

8p
uCu2Iz

J1skrd
J0

2skr0d
Fm

r
J1skrd − makJ18skrdG , s11d

whereIz=e−`
` fz

2szddz, and fzszd comes from Eq.s5ad.
In summary, for field distributions associated with circular

antenna structures with the kind of phase defects expected
for vortex creation exist for the magnetostatic potential and
the field componentshZ,hu, with a topological chargen=1,
but for the field componenthr they exist forn=0.

From a practical point of view it is easier to use several
short plane or arc antennas, placed along the corresponding
circle, instead of deploying an entire circular antenna. In this
paper two cases are developed, one consisting of three plane
antennas and the other of three arc-shaped ones. All are lo-
cated along the same circle and so the analysis rests upon a
three-beam interaction. To simulate the phase distribution, a
phase shift of 2p /3 between the neighboring antennas will
be used. The first case, addressed in the next section, is a
simplified model of a three-linear-plane-wave interaction.

III. A LINEAR PHASE DEFECT STRUCTURE INDUCED
BY THREE PLANE WAVES

The creation of a linear scalar vortex structure, through
the interaction of three plane waves in abulk crystal, has
already been considered in the optical domainf11g, but here
a vector structure is considered using three forward volume
magnetostatic waves in a ferrite thin film. As stated earlier,
the directions of propagation of the three plane waves are
displaced at angles 2p /3 with respect to each other. In addi-
tion, they will also be assumed to have amplitudesA1=A2
=A3=A.

A phase defect of the magnetostatic potentialw is placed
at the “center of interaction,” which is the pointO in Fig. 2.
If it is assumed that the distances from all three antennas
sshown as sections of solid linesB1O1C1, A2O2C2, and
A3O3C3 in Fig. 2d to the center atO are all equal, then
uO1Ou= uO2Ou= uO3Ou=r0. The initial phases of the potential
at the antennas 1, 2, and 3 areF1,F2,andF3, respectively.
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Now consider the magnetostatic potential at points on the
circle r =r surrounding the centerO, and set

kr ! 1. s12ad

Given that the polar axis is directed from pointO, the center
of the interaction, toward the center of the first antenna of
Fig. 2, the potential at some pointP with polar coordinatesr,
u is

w = Ae−ikr0eivtfeiF1eikr cosu + eiF2eikr cossu−2p/3d

+ eiF3eikr cossu−4p/3dgfzszd. s12bd

Putting F1=0, F2=2p /3, and F3=4p /3 the term in the
square brackets of Eq.s12bd plays the role of an “effective

complex envelope”Ã, where

Ã = eiF1eikr cosu + eiF2eikr cossu−2p/3d + eiF3eikr cossu−4p/3d

= Ã8 + iÃ9, s13d

and, under the conditions12bd,

Ã8 < − s3/2dkr sinu, Ã9 < s3/2dkr cosu, s14ad

which leads to the equivalent representation

Ã = s3/2dkreisu+p/2d, w = Ae−ikr0eivtÃfzszd. s14bd

Obviously, the singularity conditions1ad is satisfied at the

center of the circle. The phaseF of complex amplitudeÃ is
introduced through

tanF =
Ã9

Ã8
, dF =

Ã8dÃ9 − Ã9dÃ8

Ã82 + Ã92
. s15d

If the point P is on the circle of radiusr, thendF=du and
the phase gradient integrals2ad will yield the topological
charge associated with a magnetostatic potential phase de-
fect. Hence it is clear how a phase defect structure of a
magnetostatic potential can be created. What is needed are
three, equal-amplitude, interacting plane waves, moving un-
der the angle restraint that they have normals that are in-
clined at 2p /3 with respect to each other. Naturally this con-
clusion rests upon choosing appropriate initial amplitudes. It
is straightforward to show that wherekr!1 the components
of the Poynting vector are

Pr = 0, Pu =
c

8p
Iz

9

4
uAu2vk2rsma − md, s16d

which demonstrates that the Poynting vector rotates around
the center, as required for vortexlike structures to make their
appearance. Some simulations to illustrate this case are
shown in Fig. 3.

IV. ARC ANTENNA CREATION OF LINEAR AND
NONLINEAR STRUCTURES WITH PHASE DEFECTS

The antenna structure is placed on the surface of the kind
of normally magnetized ferrite film shown in the Fig. 1. As
before, the structure consists of microstrip antennas generat-

ing three interacting stationary forward volume magneto-
static waves. This time, however, the antennas are the arcs of
a circle that are labeled 1, 2 and 3 in Fig 2. The boundary
conditions are transformed in this case to make effective an-
tennas in the form of straight line segmentsB1O1C1,
A2O2C2, andA3O3C3 shown in Fig. 2. FVMSW beams inter-
act principally in the region 4, but diffraction and possible
nonlinearity change the simple geometrical optics picture of
beam propagation. The interaction regions shown in Fig. 2
are shown to provide a simplified picture only. The interac-
tion of three FVMSW beams in dimensionless form is mod-
eled by the coupled equations

]Uj

]yj
+ ig

]2Uj

dxj
2 + iNSuUju2 + 2o

lÞ j

uUlu2DUj + gUj = 0,

s17d

where j , l =1,2,3,Uj is the dimensionless complex amplitude
of the magnetic potential, andN is a dimensionless nonlinear
coefficient:

w = 1/2UdjfzsZdexpfisvt − kyjdg + c.c., Udj = UjU0

s18ad

where Udj are the true dimensional amplitudes of thej th
beam andU0 is an amplitude used for normalization.yj is the
direction of j th beam propagation in the corresponding coor-
dinatessee Figs. 1 and 2d, and fzsZd is the transverse distri-
bution function in the ferrite filmfsee also Eq.s5adg.

g =
1

2l0k
, N = NdU

2
0l0, g = gdl0 s18bd

are the respective dimensionless parameters of diffraction,
self-interaction, and loss, in whichNd=s]k/]uUdu2dv=const

=−1/Vgs]v /]uUdu2dk=constandgd are the actual nonlinear co-
efficient and coefficient of loss, respectively. Typically,

l0 = 1 cm, g = 0.2, N = 1, s18cd

so these have been selected for the calculations reported
here. In addition, the numerical simulations are based upon a
ferrite film of thicknessL=10 mm, and uBCua=1 cm. The
frequencies and wave numbers of each of the three interact-
ing FWMSWs are identical and are set equal tov<vH
<vM ,331010s−1 and k<150 cm−1. The nonlinear coeffi-
cient Nd for the exchange-free nonlinear Schrödinger enve-
lope equation can be determined using expansion in series by
small amplitudes of the nonlinear dispersion equationf12g or
by means of bilinear relationships analogous to the energy
conservation lawf13g. Estimates show that forN=1, l0
=1 cm, the normalizing amplitude is such thatkU0,2 Oe,
or U0,1.3310−2 Oe cm; the value ofNd can be found from
the relations18bd with a givenN and l0 fsee also Eq.s18cdg
and the estimated value ofU0.

The beams converge more toward the center of the inter-
action, taking into account some possible diffraction, through
the bending of the antennas into arcs. The boundary condi-
tions are introduced by transforming the conditions from the
actual arc antennas into those that pertain to effective straight
line antennas. As a result of this strategy, the following
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analogous boundary conditions are used for beamsi =1,2,3,
using the first one as a reference beam:

Uisxi,yid = Ui0 exph− fsxi − xi0d/x0g2jexpfiFi + icsxidg.

s19d

Here Ui0 is the maximum amplitude of theith beam, the
initial phasesFi are determined by the relationships defined
earlier, all the beam widths arex0, xi0 are the positions of the
beam centers relative to the central points of the antennas
and the phasescsxid arise because of the transformation from
arcs to the corresponding straight segments, e.g., for beam 1,
the transition is from arc 1 to the straight segmentB1C1,
which is illustrated in Fig. 2 for the case whenxi0=0. Here-
after beams withxi0=0 andxi0Þ0 are called “unshifted” and
“shifted” beams, respectively. To find the phasescsxid, con-
sider, for the sake of definiteness, the beam in Fig. 2, for
which uB1C1u=2D! r =aÎ3/6, where the radius of the circle
is r = uOB1u andD is equal approximately to half the length of
the FVMSW antenna. An application of simple ray optics
and using Eq.s6d then leads to the resultssee also the caption
to Fig. 2d

csx1d = − ikuX1X0u = r − Îr2 − D2 + x1
2 <

D2 − x1
2

r
. s20d

V. SPATIAL PATTERNS OF EXCITED LINEAR
STRUCTURES

SettingN=0 yields linear structures and these are shown
in Figs. 3–5. These cover the following cases:sad no focus-
ing or shifting of the beam for which expficsxidg=1 and
xi0=0; sbd focusing without shifting of the beam, for which
expficsxidgÞ1 and xi0=0; scd expficsxidgÞ1 and xi0Þ0,
which means that there is both focusing and beam shifting.
Note also that Figs. 3–5 correspond to the interaction of three
magnetostatic waves with equal absolute amplitude values.
Figures 3sad, 4sad, and 5sad, Figs. 3sbd, 4sbd, and 5sbd, and
Figs. 3scd, 4scd, and 5scd, respectively, show the spatial dis-
tributions of Rewsx,yd, uwsx,ydu2, and a vector proportional
to the Poynting vector. If required the coefficient of propor-
tionality can be determined in each particular case and has
only been selected from the point of view of clarity and
quality of presentation of the essential features.hz,]w /]z
,Fsx,yd] fzszd /]z, Rewsx,yd, and uwsx,ydu2 have the fol-
lowing physical interpretations. To within an accuracy of
some multiplier, they are uRewsx.zduz=L/2,uReFsx,yd
,hzuz=L/2, uwsx,zduz=L/2

2 ,uhzuz=L/2
2 . Without focusingssee Fig.

3d, in the vicinity of the center, a magnetostatic wave beam,
with a finite width equal tox0, is approximately a plane
wave. It can be seen from Figs. 3sad and 3sbd that, as a result

FIG. 3. Spatial vortex structure excited by three linear, equal-absolute-amplitude, unshiftedsxi0=0, i =1,2,3d, unfocused magnetostatic
plane wave beams. TheX andY axes lie along the directions of the linesO1C andO1O in Fig. 2, respectively. The origin of the coordinates
coincides with the pointO1 scenter of the antenna of the first MSW beamd in Fig. 2. The same applies to Figs. 4–13 below; the beam width
is x0=0.1 and remains at this value for the computations displayed in this paper.sad spatial distribution of Rewsx,yd, the real part of the
magnetostatic potential;sbd distribution of uwsx,ydu2; scd display of a vector that is proportional to the Poynting vector.
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of a linear interaction among the three waves, a structure
with a quasiperiodic set of singular points is generated. Fig-
ures 4sad and 4sbd show clearly the effect of focusing in the
central region of the three beams excited by arc antennas. In
this case,singularquasiperiodic structures for Rewsx,yd and
uwsx,ydu2 are also generated in the central region of the ferrite
film. Quasiperiodic structures for Rewsx,yd and uwsx,ydu2
are absent, however, when the three focused beams have
centers displaced, with respect to the center of the interac-
tion, i.e., xi0Þ0, as can be appreciated from Figs. 5sad and
5sbd. Quasiperiodic vortex structures aroundO with sdimen-
sionlessd coordinatesx=0, y=0.287 or sdimensionald x=0,
y=a/ s2Î3d for undisplaced beams are shown in Figs. 3scd
sno focusingd and 4scd sfocusingd. The formation of a system
of vortices, with right and left directions of rotation of the
Poynting vector, is obvious from these figures. The value of
the magnetostatic potentialw was found atO by a direct
numerical calculation. It is zero in both the linearsFigs. 3–5d
and the nonlinear cases, when the absolute values of the
amplitudes of all three interacting waves are equal to each
other.

In the case of three beams with shifted centerssxi0Þ0d a
symmetrical structure of right- and left-rotating vortices is
formed aroundO as seen in Fig. 5scd. In the linear case, for
equal amplitudes of the interacting beams, the unit value of
topological charge was obtained by direct numerical compu-
tation. In the general nonlinear wave case, however, a geo-
metrical method is more convenient. For both focusing and

nonlinear beams, direct computation of the phase integral is
not very accurate because the accuracy is restricted by the
valuekÎdx2+dy2, which is of the order of 0.15. Even though
this is an adequate limitation for the calculation of the po-
tential envelope function, within the usual slowly varying
approximation, the inaccuracy of the phase integral is rather
large. An effective alternative to direct computation of this
integral, however, is to build a graph of the phase along some
circumference. Taking into account that each jump of phase
is equal top, the number of jumps in the phase along this
circumference then yields a value of topological charge. Fig-
ure 6sad shows the spatial distribution of the phase in the
vicinity of the origin for linearly interacting focusing beams
with equal absolute values of the amplitude. Two phase
jumps, each approximately equal top, can be clearly seen,
so that the topological vortex charge of the corresponding
vortex is equal to 1. Figure 6sbd shows the same phase dis-
tribution, but over a larger part of the interaction region.

Note that the motion of the magnetostatic potential in the
vicinity of the center can be described as a rotation. There is
a localization of the magnetostatic potential along theZ di-
rection sin the region of the filmd which is described by the
function included in the relationships5ad. The magnetostatic
potential inside the ferrite film is the result of interference of
two waves counterpropagating and forming a standing wave
in the Z direction. The phase defects for nonfocused and
focused interacting beams, respectively, can be called ar-
rangements of quasiscrew phase dislocations or a set of qua-
siscrew vortices in a ferrite film. The term quasiscrew is

FIG. 4. Spatial vortex structure excited by three linear, equal-amplitude, unshifted, focused beams.sad Spatial distribution of Rewsx,yd;
sbd uwsx,ydu2; scd vector proportional to the Poynting vector.
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meant to convey the fact that a real screw is replaced in the
ferrite film by a rotation. If three linearsopticald plane waves
in an unbounded medium have wave vectors in the same
plane, and equal amplitudes, wave numbers, and frequencies,
a periodic set of screw dislocations occurs. The symmetry of
the wave structure with a set of phase defects that are vorti-
ces is interesting. For the geometry depicted in Fig. 2, using
three waves with equal amplitudes, wave numbers, and fre-
quencies and initial phases equal toF1=0, F2=2p /3, and
F3=4p /3, the total magnetostatic potential satisfies the fol-
lowing relationship:

wsu0 + 2p/3d = wsu0dei2p/3, s21ad

whereu0 is the polar angle and the relationship describes the
macroscopic symmetry of the structure considered. In dis-
tinction to this, circular symmetry is evident only in the
neighborhood of the vortex axis. For three identical interact-
ing, lossless, linear plane waves with equal amplitudes the
analysis works well within the vicinity of any phase defect.
If loss, diffraction, nonlinearity, or focusing is present, the
amplitude of each of the waves will depend on the coordi-
nates, and Eq.s14ad will be valid only for the vicinity of the
geometrical center of the structure. In the latter case, in the
other points of the phase defects shown in Figs. 3sad, 3sbd,
4sad, and 4sbd, Eq. s14ad will be valid only approximately,
because the supposition that all the wave amplitudes are

equal to each other will not be true in the vicinity of other
phase defect points. At the same time, because the ampli-
tudes of the waves change slowly in time and space it can be
said, at least for the phase defects seen in Figs. 3sad, 3sbd,
4sad, and 4sbd, that being in the neighborhood of the center
gives them validity. Therefore, even for lossy and dispersive
fFigs. 3sad and 3sbdg, focusedfFigs. 4sad and 4sbdg, or non-
linear ssee Figs. 8 and 9 belowd beams, the structures can be
treated as a set of quasiscrew dislocations. As can be seen
from Eq. s14ad, and also from the way that the phase is
determinedfsee Eqs.s1bd and s15dg

Fsu + pd = Fsud. s21bd

Figure 7 shows a small fragment of the phase distribution
with equal phase contours, for three focused linear beams
with equal amplitudesfFigs. 6sad and 6sbdg in the close vi-
cinity of the central point and demonstrates the above phase
periodicity. Note that Fig. 7 is a small fragment of Fig. 6 so
it reflects the same structural symmetry as Fig. 6. Equation
s21bd characterizes the microscopic symmetry of the struc-
ture in the neighborhood of the phase defect pointssd while
Eq. s21ad characterizes the macroscopic symmetry of the
structure as a whole, relative to the geometrical center.

FIG. 5. Spatial vortex structure excited by three linear, equal-amplitude, shiftedsxi0=0, i =1,2,3d, focused beams.sad Spatial distribu-
tion of Rewsx,yd; sbd uwsx,ydu2; scd Poynting vector distribution.
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VI. INFLUENCE OF NONLINEARITY, UNEQUAL BEAM
AMPLITUDES, AND SHIFTED BEAM CENTERS

For a linear three-wave magnetostatic interaction, defined
with a suitable relative phase shift, a rotating vortex structure
has been established in the previous sections. The influence
of nonlinearity upon the shape of this structure and also the
vortex charge will now be addressed, together with a study

of the role of interacting beam asymmetry, when the moduli
of their amplitudes are unequal. The work described here can
be put into a broader context by noting that, inf14g sdevoted
to nonlinear singular opticsd, in particular, three-wave inter-
action was considered and the possibility of vortex charge
redistribution was discussed.

Suppose, for simplicity, that only the first two polar
modes are excited, i.e.,F12sr ,ud=A1srdeiu+A2srde2iu, where
the valuesA1,2 are real andF12s0,ud=0. F12 is a function
describing qualitatively a vortex structure, with the center at
r =0. The outcomes of a direct calculation, of the integral of
the phase gradient are 2p, 3p, and 4p, respectively, forA2
=0, A1=A2, andA1=0. A more general result can be easily
obtained usingF12sr ,ud=A1srdF1sudF2sr ,ud, where F1sud
=eiu, F2sr ,ud=1+r0srdeiu, and r0srd=A2srd /A1srd. A simple
geometrical argument is enough to investigate the phase in-
tegrals forr0,1, r0=1, andr0.1.

The corresponding vortex charges are 1, 3/2, and 2 in
these cases, so that if the ratio of the amplitudes of the sec-
ond and main polar harmonics can be changedslinearly or
nonlinearlyd, the vortex charge can also be changed. The
transformations of topological charge during free space
propagation of a light wave, which is a combination of a
Gaussian beam with a multiply charged optical vortex within
a Gaussian envelope, were studied inf15g. In addition, it
interesting to observe that the possibility of generating an
optical vortex with a fractional charge after the diffraction of
a linear optical beam on a thin binary amplitude grating has
already been discussedf16g.

In the present calculations, only rather low levels of har-
monics are excited, and they determine the nonlinear coeffi-
cient needed for the envelope equation. The nonlinearity pro-
vides self- and cross interactions of the main harmonic
amplitudes, in the vicinity of the singular points. The higher
harmonics are included only implicitly into the system of
coupled envelope equations through the nonlinear coefficient
because the amplitudes of the harmonics are much smaller
than the amplitudes of the three main interacting beams. A
small enough nonlinearity will not influence the charge of
the generated vortex. The numerical calculations presented
below confirm this conclusion.

Figures 8–13 are generated for dimensionless magnetic

FIG. 8. Nonlinear structure Rewsx,yd for the same parameters
as in Fig. 3sad. Dimensionless input beam amplitudesU10=U20

=U30=3.

FIG. 6. sad Spatial distribution of the magnetostatic potential
phaseF in the neighborhood of the center pointO, for three equal-
amplitude, linear, focused beams.sbd Spatial distribution of magne-
tostatic potentialF for the same parameters as insad, but in wider
spatial region.

FIG. 7. Contour map fragment of spatial distributionsshown in
Fig. 6d of magnetostatic potential phaseF in the close vicinity of
the pointO, the geometrical center of the structuresshown in Fig.
2d. The values ofF in radians on the lines of the constant phase are
shown by the numbers inside the figure.
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field amplitudesUj ,2–3; values that are necessary to pro-
vide the nonlinear effects described below. Note that further
increase of the input amplitudes may lead to a second-order
spin-wave instabilityf17–19g. The possibility of exciting ex-
change spin wavesswith the same frequency as the incident
beamsd is not taken into account in the present paper and will
be the subject of future work. The nonlinear calculations
presented here show a qualitative influence of nonlinearity
on vortex formation due to the three-beam interaction. The
influence of the nonlinearity upon the shape of the spatial
structures can be seen in Figs. 8 and 9, which are computed
with equal absolute values of all nonlinear beam amplitudes.
They show what happens for cases in which there is absence
or presence of focusing. Comparing Figs. 8 and 9 with Figs.
3sad and 4sad shows that the nonlinearity leads to nonlinear
two-dimensional diffraction. This causes broadening of the
region of interaction and this is accentuated for focused
beams, as can be appreciated by looking at Figs. 4sad and 9.
The difference between the linear and nonlinear structures in
the absence of focusing is rather less than in the presence of
focusing. Simultaneous asymmetry of the interacting beams
brings out the most pronounced effect of the nonlinearity. As
can be seen from Figs. 4scd and 5scd, equal-amplitude linear

focused beams lead to a system of right- and left-rotating
vortices that are symmetrical, regardless of whether they are
shifted or not. If the linear beams have only slightly different
absolute amplitudes, almost symmetric vortex structures are
maintained and are shown in Figs. 10 and 11. Switching on
the nonlinearity, for the amplitude values used in the linear
structures, changes the situation to that shown in Figs. 12
and 13. Here it can be seen that the vortex structure formed
by unshifted beams, endowed with different absolute ampli-
tudes, shifts only slightly, as a whole, due to nonlinearity. If
the beam centers are shifted then nonlinearity causes a rather
complicated rebuilding of the vortex structure topology, as
seen by comparing Figs. 5scd and 11 with Fig. 13. Figure 13
reveals that the nonlinearity causes a rotation of the structure
as a whole, spatial shifting of the points with phase defects,
and a rebuilding that includes merging with a neighboring
part of the structure. Overall, the conclusion is that in the
absence of nonlinearity, slightly different amplitudes for the
interacting beams permit the symmetry to remain but nonlin-
earity causes it to disappear. Note that it is also probably

FIG. 10. Spatial distribution of field of the Poynting vector ex-
cited by three unshifted, non-equal-amplitude, linear, focused
beams. Input beam amplitudes areU10=U20=2.5, U30=2.0.

FIG. 11. Spatial distribution of field of the Poynting vector ex-
cited by three shifted, non-equal-amplitude, linear, focused beams.
Absolute values of input beam amplitudes areU10=U20=2.5, U30

=2.

FIG. 12. Distribution of Poynting vector for the same param-
eters as in Fig. 10 but now with a nonlinear interaction of the
magnetostatic beams.

FIG. 9. Nonlinear structure Rewsx,yd for the same parameters
as in Fig. 4sad. Dimensionless input beam amplitudesU10=U20

=U30=2.95.
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possible to create vortices using structures containing layers
with higher nonlinearity than pure yttrium iron garnetsYIGd
films possess, e.g., ferrite-paraelectric structuresf20,21g.

Using just visual evidence, presented in the form of the
Poynting vector and phase spatial distributions, no points
have been discovered where, simultaneously, the complex
amplitude of the magnetostatic potential is zero and the
phase integral around this point is different from 2p. In other
words, for the linear or nonlinear interaction of three magne-
tostatic beams, under the condition that there is only an in-
significant presence of higher harmonics, the vortex charge
does not differ from 1 or21.

VII. DISCUSSION AND CONCLUSIONS

It has been shown that some stationary vortex structures
can be excited experimentally in a ferrite film. One sugges-
tion is that the vortex structure can be exposed by a Brillouin
scattering methodf22g. These vortex structures are in the
technically important centimeter and millimeter ranges. YIG
or hexaferrite material may be used, but without using super-
conductivity or an exchange interaction. The main require-
ment for an experimental arrangement would be to maintain
the necessary difference of phases between the antennas ex-
citing the three interacting beams. In the future, nonstation-
ary structures and the combination of vortex excitation with
parametric interaction will be considered.

On the basis of the present work, linear and nonlinear
vortex structures can be excited in a ferrite film, using a

three-beam interaction with a 2p /3 phase difference between
the second and first and the third and second beams. If the
centers of the beams are not displaced then Figs. 3scd, 4scd,
10, and 12 show what can happen to focused and nonfocused
beams. Quasiperiodic structures are formed with vortex sin-
gularities and topological charge equal to 1 or21. If focused
beams, with displaced centers, interact with each other then a
system of three clockwise-rotating vortices with one counter
clockwise-rotating vortex in the center can be formed, as
shown in Figs. 5scd and 11.

If the absolute values of the beam amplitudes are equal
then the main effect of the nonlinear diffraction is to broaden
the interacting structures. For focused beams, a broadening
of the region of interaction around the central point also oc-
curs. If the moduli of the amplitudes of interacting beams
with shifted centers are different, nonlinearity causes shifting
and a rotation of the structure as a whole. A vortex exists in
the linear case, surrounded by three symmetrical vortices. A
vortex structure of three beams with different absolute values
of the input amplitudes changes qualitatively due to nonlin-
earity. At the same time, no nonlinear change of vortex
charge is obtained under the condition of a small level of
higher harmonics adopted in the present modeling.

One direction for future investigation is to search for a
nonlinear change in the vortex charge using layered struc-
tures that include materials with higher nonlinear coefficients
such as ferrite-paraelectric-dielectric materials, or just
paraelectric waveguides, where dispersion is smaller and
nonlinearity larger than in ferrites. As a result, the effective
generation of higher harmonics can be expected, and, there-
fore, a nonlinear vortex charge change. Another interesting
possibility is the generation of vortex structures using an
amplitude-dependent group velocity, which leads to the
propagation of different parts of a pulse, with different ve-
locities and phase defect structure formationf14g. To do this,
structures with large nonlinearity and large enough disper-
sion are necessary. Probably, paraelectric-ferrite structures
f20g combining the high dispersion of ferrite films and large
paraelectric nonlinearityf21g would be suitable for this. The
control of vortex structure characteristics could be achieved
using two counterpropagating pulses that are in antiphase
and including a relative shifting of their centers, together
with parametric coupling between them. This kind of para-
metric coupling could be provided using a microwave reso-
nator f23g. There are indeed a lot of interesting possibilities
for centimeter and millimeter range vortex research based
upon multilayered structures that include ferrite films.
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