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Excitation of vortices using linear and nonlinear magnetostatic waves
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It is shown that stationary vortex structures can be excited in a ferrite film, in the important centimeter and
millimeter wavelength ranges. It is shown that both linear and nonlinear structures can be excited using a
three-beam interaction created with circular antennas. These give rise to a special phase distribution created by
linear and nonlinear mixing. An interesting set of three clockwise rotating vortices joined by one counter-
rotating one presents itself in the linear regime: a scenario that is only qualitatively changed by the onset of
nonlinearity. It is pointed out that control of the vortex structure, through parametric coupling, based upon a
microwave resonator, is possible and that there are many interesting possibilities for applications.
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I. INTRODUCTION meter frequency range, even though the creation of a “vortex

- ) ) ~antenna” in the microwave and millimeter-wave ranges
The recognition that vortices are rather important manisyould be very important.

festqtions of thical phase s.in_gularitie_sf has opetned.up_anew This paper addresses how this important step can be
frontier in optics. These “SW|rI|.ng“ entities can, in principle, taken, by investigating phase singularities in forward volume
be used to carry data and point to a new era for communigagnetostatic wave€VMSW’s) [9]. The starting point is
cations. Whlle elec_tror_nagne_ztlc vortices are attractlve_ fokhe famous Nye and Berfi8] definition, which states that a
modern optical applications, it should be noted that vorticesypage singularity in space occurs where the real and imagi-
in general, are a common phenomenon and have been oy parts of the wave field vanish simultaneously, i.e., for a

served in both water and the atmosph_ere for hundreds Qfcgjar wave field, represented by the complex funcBom
years. They are a common occurrence in plasma and atM@nase singularity occurs whenever

spheric science, and striking examples include the behavior

of Rossby[1] and Alfvén waveq?2]. Even so, it is only in F,=0, F=0. (13
recent times that the wave field structure has been under- . ) .
stood properly, from an electromagnetic point of view, andHereF, andF; are the real and imaginary parts, respectively,
the full generic mathematical properties have been develnd the phasé is defined through

oped. Experimentally, vortices in liquid§], space plasmas E

[4], and the atmospheris] have been thoroughly investi- tan®) = — . (1b)
gated but it is the recent studies, especially in nonlinear op- Fr

tics, that have stimulated an almost explosive developmen

in both theoretical and experimental contributi¢6s/]. This fied: hence the term “singularity.” Actually, this singularity

work builds upon the pioneering work of Nye and Bef8y. may be associated with either an edge or a screw dislocation
The successes of optical vortex theory and experiment Y DE ' edge or . .
d it is the latter that characterizes vortices, which will be

have an importance that goes far beyond the boundaries i
high frequency optics because the generic ideas ought to ddressed here. The presence of a vortex means that the line

applicable to magnetostatic waves and should impact upop?tegral of the spatial gradient of the phase, taken around the

o . - vortex center, or line, is some multiple af, i.e.,
quasioptical microwave and millimeter-wave systems. The P

latter are of increasing importance in surveillance utiliza- .
tions, so any work in this area is likely to generate many 3€(Vd>)dl =2n, (29
applications. Up to now, however, no arrangements have

been designed to excite vortices in the microwave or milli-\\\hich n=1,2..

bbviously,@ is indeterminate, whenever E(la) is satis-

. is a positive integer, proportional to
what has become known as the “topological charge.h If
=0 then a dipole vortex structure is said to exist.
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FIG. 1. Forward volume magnetostatic wave propagating in nor- FIG. 2. Excitation of three waves by plane antentssid line
mally magnetized ferrite filmL is the width of the filmk is the  sectionsB;0;C;, A,0,C,, and A;O3B5), or by arc antennagrcs

wave number, an#l is the applied magnetic field. B,C4, A,C,, andAzB; of a circle aroundD shown as dashed lines;
these arcs are not shown to scale for the convenience of displaying
(95* the geometrical calculationsCircular antennas are placed at/3
- C .
p= —Re( <P_) (2b) intervals around the center &
8 ot

where ¢ andb are the magnetostatic potential and the mag-Iatlon are determined through the equatioyl0

netic induction, respectively. If a singularity like a vortex is
present then the Poynting vector rotates around the “vortex
center,” which is a point in the two-dimensional case and afyhere
axis in the three-dimensional case. The surface of constant
phase associated with a screw dislocation is helicoidal, so bx=— (rwex —imaey), by==(uey—iunaeyx), bz=¢z

divb =[u(@xx+ eyy) + @771 =0 3)

that the Poynting vector, which is directed along the normal, (4a)
spirals about the propagation direction.
In the magnetostatic regime of a ferrite material inside the ferrite film, and
h=-Vo, (20) divb = - (exx+ vy + ¢z2) (4b)
whereh is the magnetic field and there is a potential carriedoutside the ferrite film. The quantitigs and w, are compo-
by a magnetostatic wave of the form nents of the permittivity tensor,
{o=lolexdi®] (2d) w2 — w? Wy,
. . . H="%5—2, MHa= "% 3 (4c)
where® is the phase and the amplitudeds W~ w A VRN )

The scalar functiorp andhy, the component of the mag- | o

netic field normal to the surface of the ferrite film, sketchedin terms of the definitions wy#|¥|(Ho=47Mo), wy

in Fig. 1, both satisfy conditionél) and (2), for n#0. On  #|¥47M,, and 0% =wp(wy+wy), in which Hy and 4rM,

the other hand, the tangential components of the magnetiare the bias externally applied magnetic field and the satura-

field h, lying in the OXY plane of the ferrite film, satisfy tion magnetization of the ferrite film, respectivelyis called

conditions(1) and(2) with n=0. the gyromagnetic ratio. The tangential components of mag-
netic field ¢x y and the normal component of magnetic in-
ductionb; are continuous at the ferrite film boundaries. The

Il. CIRCULAR ANTENNA EXCITATION OF LINEAR latter are located af = iL/Z, and the Shape of the funda-
FORWARD VOLUME MAGNETOSTATIC WAVES mental mode of the magnetostatic potenﬁﬁil is

The geometry for forward volume magnetostatic waves cos(\s’——ﬂ|k|z) 2 5

and a sketch of the excitation arrangement are shown in Figs. D RPN TR = ot
. : o = /- X F(X,Y)€e

1 and 2. A linear FVMSW propagates in a ferrite film along ¢ C_(ﬁz\ wlKL2) (*Y)
the directionY, normal to an applied magnetic field that is el |z > L2
directed along th& axis. The magnetostatic potential and = f (DF(X,Y)e*", (5a)

field components are proportional to ¢mt)], wherew is
the angular frequency. The field structure and dispersion rewherek is determined from the dispersion equation
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— 1 netic field vector. The latter, for points on a circle of radius
V=
Hence the equation fd¥ is hlz-12== Velz=r2
‘92—':2+92—F2+k2|::0. (50) =&z &+ SN,
XY —acarike) | o qoditke) | 1, dilke)
For an excitation of a forward volume magnetostatic wave Jikrg) " Jy(krp) Hp Jy(krp)
by the kind of circular antennas shown in Fig. 2, the solu- (10)

tions are complicated by the cylindrical geometry. In Fig. 2, _
circular antennae are placed atr/3 intervals around the where the common multiplieg" is omitted.

center atO. The distances from the center to the chords of Itis interesting that, although the real and imaginary parts
these arcs are labele@dO, (i=1,2,3. The chords are seg- of the field componenté;,h, vanish at the center of the
ments of the triangl&BC. When excitation of the FVMSWs circle and lead to the same topological structure, the compo-
by arc antennas is considered, the geometrical optics is usé@nt h, does not satisfy the condition of vanishing at the
to “transform or recalculate” the boundary conditions fromorigin. Further confirmation of the presence of a vortex
the arcs to “effective straight line antenngseée the end of structure comes from the behavior of the Poynting vector,
Sec. ll)). The length of the sectiok;X, is found as follows. Which rotates around the center. In fact, the only nonzero
|O;:X4|=x;, wherex; is the coordinate of the poirX; at the =~ component of the Poynting vector is

sectionO;C,. The radius of the arB,C, is r=|0X,|=|0B,|; c 3,(kr)
|00, [=\r?-A%; |0Xy|=1]00,2+]0;X4[?= V|00, 2+ P0:8_|C|2|Z.leT .
=\r?—A2+x2. Therefore T olkro) L ¥

3u(kn) = pakdikn) [, (12)

AZ— 2 Wherelzszwfi(z)dz,' andfz(z? comes from !Eq(5a).' .
X1 Xo| = |OXo| = [OXy| =1 = \r2— A2+ X =~ — = (e In summary, for field distributions associated with circular
r antenna structures with the kind of phase defects expected
for vortex creation exist for the magnetostatic potential and
e field componenth,,hy, with a topological charga=1,
ut for the field componert, they exist forn=0.

To be specific, only solutions with finite values of magneto-
static potential in the center of the circular antenna need t

be considered. Hence,andF(r, 6) are finite, ar =0, where . . L .
From a practical point of view it is easier to use several

(r,0) are cylindrical coordinates, with the origin coinciding .
with the center of the circular microstrip antenna. The Poyn-s.hort plane or arc antennas, plac_ed qlong the correspond_mg
ting vector in this svstem of coordinates has the .com onentC'rde’ instead of deploying an entire circular antenna. In this
9 Y P Saper two cases are developed, one consisting of three plane
fo ) - 1la¢* dg* antennas and the other of three arc-shaped ones. All are lo-
Pr=-2"Rellwg| iu,~ tu—— | cated along the same circle and so the analysis rests upon a
8m r e ar . . . .
three-beam interaction. To simulate the phase distribution, a

)} phase shift of /3 between the neighboring antennas will
: ()

b —_Cad <_i o, Lo
T gm L OO\ e TR e
If the radius of the microstrip antennarig then the magne-

tostatic potential is determined by the additional boundary |;. A LINEAR PHASE DEFECT STRUCTURE INDUCED
condition BY THREE PLANE WAVES

be used. The first case, addressed in the next section, is a
simplified model of a three-linear-plane-wave interaction.

F(ro,6) =Cé’, (8) The creation of a linear scalar vortex structure, through
; ; ; _the interaction of three plane waves inbalk crystal has
}/L/)kr]g’rec 's a real constant. The solution of B3c) is, there already been considered in the optical donjdif], but here
a vector structure is considered using three forward volume
Jq(kr) magnetostatic waves in a ferrite thin film. As stated earlier,
Jy(krg) © the directions of propagation of the three plane waves are
displaced at angles/2 3 with respect to each other. In addi-
from which it is clear thaf(0,6)=0 and a property associ- tjon, they will also be assumed to have amplitudgs A,
ated with a vortex structure is guaranteed for FVMSWs ex=pa,=A,
cited by the circular antenna. Contour integration of the A phase defect of the magnetostatic potentias placed
phase along a circular path around the phase defect@t at the “center of interaction,” which is the poitin Fig. 2.
leads tof d® = [57d6=2, with the conclusion thai=1 and  If it is assumed that the distances from all three antennas
that the topological charge is 1. Although the field is deter-(shown as sections of solid lineB,0,C,, A,0O,C,, and
mined by means of a single, scalar, magnetic potential funcAzO;C; in Fig. 2) to the center alO are all equal, then
tion, it is also interesting to approach the investigation of thg0,0|=|0,0|=|050|=r,. The initial phases of the potential
topological structure through the components of the magat the antennas 1, 2, and 3 abg, ®,,and ®3, respectively.

F(r,6) = Cd?
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Now consider the magnetostatic potential at points on théng three interacting stationary forward volume magneto-
circle r=p surrounding the cented, and set static waves. This time, however, the antennas are the arcs of
a circle that are labeled 1, 2 and 3 in Fig 2. The boundary
kp<1. (123 conditions are transformed in this case to make effective an-

Given that the polar axis is directed from pot the center te€nnas in the form of straight line segmeniO,C,,
of the interaction, toward the center of the first antenna 0f\?02Cz, andAsO5Cs shown in Fig. 2. FVMSW beams inter-

Fig. 2, the potential at some poiRtwith polar coordinatep, ~ act principally in the region 4, but diffraction and possible
0 is nonlinearity change the simple geometrical optics picture of

beam propagation. The interaction regions shown in Fig. 2

are shown to provide a simplified picture only. The interac-

+ g Pagke cos(0—4w/3)]fz(z)_ (12h) tion of three FVYMSW beams in dimensionless form is mod-
eled by the coupled equations

o= Ae—ikrOeiwt[eiq)leikp cosd 4 ei(IDZeikp cog 6-2m13)

Putting ®,=0, ®,=27/3, and ®;=4#/3 the term in the

“ i ;. PU;
square brackets 0;Eej12b) plays the role of an “effective a_.l +ig i~ + |N(|Uj|2+ 22 |U||2>UJ- +9U;=0,
complex envelopeA, where Yi i 1#]
A = @ P1gkp 0% 4 i ®ogikp cO6-2713) 4 i Pgikp cosb-4mI3) (17)
~ wherej,1=1,2,3,U; is the dimensionless complex amplitude
=A"+IAY, (13 of the magnetic potential, aridis a dimensionless nonlinear
and, under the conditiofL2b), coefficient:
~ ~ =1/2U4if (Z2)exfdi(wt = ky;)] +c.c., Ug=U:U
A’ =—(3/2kpsing, A’=(3/2kpcosd, (14a ¢ aifAZ)exeli(wt ~ky))] 4= (218a)

which leads to the equivalent representation ) ) )
where Uy; are the true dimensional amplitudes of tfta

A= (312)kpe #™D  = Ae‘ikroeiwt;&fz(z). (14p  beam andJ, is an amplitude used for normalizatiop.is the
. . ) " ) L direction ofjth beam propagation in the corresponding coor-
Obviously, the singularity conditionila) is satisfied at the ginate(see Figs. 1 and)2andf,(Z) is the transverse distri-
center of the circle. The phade of complex amplitudéA is bution function in the ferrite filnjsee also Eq(53)].
introduced through

An NANT — AMART 9= N:NdU20|0' y=7d|0 (18b)
and =t gp= AN AR iA fdA. (15) 2lok
A’ A2+ A2 are the respective dimensionless parameters of diffraction,
self-interaction, and loss, in whictNg=(k/d|U?) u=const
==1/Vg(dw! 3|Ug?y=constand yq are the actual nonlinear co-

gf_ficient and coefficient of loss, respectively. Typically,

If the point P is on the circle of radiug, thendd®=d# and
the phase gradient integré®a will yield the topological
charge associated with a magnetostatic potential phase d
fect. Hence it is clear how a phase defect structure of a lo=1cm, y=0.2, N=1, (189
magnetostatic potential can be created. What is needed are )

three, equal-amplitude, interacting plane waves, moving ung© these ha_l\_/e been selec_ted f_or the_ calculations reported
der the angle restraint that they have normals that are inher_e. In_ addmonf the numerical simulations are based upon a
clined at 27/3 with respect to each other. Naturally this con- ferrite film of thicknessL=10 um, and|BCla=1 cm. The
clusion rests upon choosing appropriate initial amplitudes. [frequencies and wave numbers of each of the three interact-

is straightforward to show that whekp < 1 the components Ing FWMSWSs are identical and are set equal die= wy-
of the Poynting vector are ~wy ~3X10% ™ andk~150 cnt’. The nonlinear coeffi-

cient Ny for the exchange-free nonlinear Schrédinger enve-
lope equation can be determined using expansion in series by
small amplitudes of the nonlinear dispersion equattidtj or

. ] by means of bilinear relationships analogous to the energy
which demonstrates that the Poynting vector rotates arounghnservation law{13]. Estimates show that foN=1, I,

the center, as required for vortexlike structures to make theit 1 ¢y, the normalizing amplitude is such thet,~2 Oe,
appearance. Some simulations to illustrate this case arg Uy~ 1.3% 1072 Oe cm; the value oRly can be found from

c 9
P, =0, szaIZZ|A|2wk2r(Ma—,u), (16)

shown in Fig. 3. the relation(18b) with a givenN and|, [see also Eq(180)]
and the estimated value of,.
IV. ARC ANTENNA CREATION OF LINEAR AND The beams converge more toward'the c_enter' of the inter-
NONLINEAR STRUCTURES WITH PHASE DEFECTS action, taking into account some possible diffraction, through

the bending of the antennas into arcs. The boundary condi-
The antenna structure is placed on the surface of the kintlons are introduced by transforming the conditions from the
of normally magnetized ferrite film shown in the Fig. 1. As actual arc antennas into those that pertain to effective straight
before, the structure consists of microstrip antennas generdine antennas. As a result of this strategy, the following
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FIG. 3. Spatial vortex structure excited by three linear, equal-absolute-amplitude, ungkiftedl, i=1,2,3, unfocused magnetostatic
plane wave beams. ThéandY axes lie along the directions of the lin€sC andO;0 in Fig. 2, respectively. The origin of the coordinates
coincides with the poin®; (center of the antenna of the first MSW beaimFig. 2. The same applies to Figs. 4—13 below; the beam width
is Xo=0.1 and remains at this value for the computations displayed in this gapspatial distribution of Re(x,y), the real part of the
magnetostatic potentialb) distribution of|o(x,y)|% (c) display of a vector that is proportional to the Poynting vector.

analogous boundary conditions are used for bessis2,3, V. SPATIAL PATTERNS OF EXCITED LINEAR
using the first one as a reference beam: STRUCTURES
Ui (%, Vi) = Uig expl— [(X; = Xio)/Xol2texi®; + ig(x)]. SettingN=0 yields linear structures and these are shown

(19) in Figs. 3-5. These cover the following casé®: no focus-
ing or shifting of the beam for which ekip/(x)]=1 and
Here U, is the maximum amplitude of thigh beam, the X=0; (b) focusing without shifting of the beam, for which
initial phasesd; are determined by the relationships definedexdig(x)]# 1 and x,=0; (c) exdiy(x)]#1 and X,#0,
earlier, all the beam widths axg, x;; are the positions of the which means that there is both focusing and beam shifting.
beam centers relative to the central points of the antenndsote also that Figs. 3-5 correspond to the interaction of three
and the phaseg(x;) arise because of the transformation from magnetostatic waves with equal absolute amplitude values.
arcs to the corresponding straight segments, e.g., for beam Eigures 3a), 4(a), and Ja), Figs. 3b), 4(b), and §b), and
the transition is from arc 1 to the straight segm&i€,, Figs. 3c¢), 4(c), and Jc), respectively, show the spatial dis-
which is illustrated in Fig. 2 for the case whe&g=0. Here- tributions of Rep(X,y), le(x,y)|?, and a vector proportional
after beams withx,y=0 andx;o# O are called “unshifted” and to the Poynting vector. If required the coefficient of propor-
“shifted” beams, respectively. To find the phas#g;), con- tionality can be determined in each particular case and has
sider, for the sake of definiteness, the beam in Fig. 2, foonly been selected from the point of view of clarity and
which |B,C,|=2A <r=ay3/6, where the radius of the circle quality of presentation of the essential features: de/dz
isr=|OB,| andA is equal approximately to half the length of ~F(x,y)df(2)/dz, Re(x,y), and |¢(x,y)[* have the fol-
the FVMSW antenna. An application of simple ray opticslowing physical interpretations. To within an accuracy of
and using Eq(6) then leads to the resulsee also the caption some multiplier, they are Reg(X.2)|, ,»~ ReF(X,y)
to Fig. 2 ~h L2 |0(X, 2% o~ N2, ,- Without focusing(see Fig.
A2y 3), in the vicinity of the center, a magnetostatic wave beam,
— —r_J2_ A2 2.2 T with a finite width equal tox,, is approximately a plane
Yxa) = = IKXXo] =1 = V- A% ro (20 wave. It can be seen from FiggaBand 3b) that, as a result
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FIG. 4. Spatial vortex structure excited by three linear, equal-amplitude, unshifted, focused (@&patial distribution of Re(X,y);

2: (c) vector proportional to the Poynting vector.

(b) |e(x,y)

of a linear interaction among the three waves, a structur@onlinear beams, direct computation of the phase integral is
with a quasiperiodic set of singular points is generated. Fignot very accurate because the accuracy is restricted by the

ures 4a) and 4b) show clearly the effect of focusing in the
central region of the three beams excited by arc antennas.
this casesingularquasiperiodic structures for Rg€x,y) and

valuekydx?+dy?, which is of the order of 0.15. Even though
this is an adequate limitation for the calculation of the po-
tential envelope function, within the usual slowly varying

le(x,y)|2 are also generated in the central region of the ferriteéaPproximation, the inaccuracy of the phase integral is rather

film. Quasiperiodic structures for Rex,y) and |e(x,y)|?

large. An effective alternative to direct computation of this

are absent, however, when the three focused beams halfi€9ral. however, is to build a graph of the phase along some

centers displaced, with respect to the center of the intera
tion, i.e., xp# 0, as can be appreciated from Fig$a)5and
5(b). Quasiperiodic vortex structures arou@dwith (dimen-
sionles$ coordinatesx=0, y=0.287 or(dimensional x=0,
y=a/(2y3) for undisplaced beams are shown in Figéc)3
(no focusing and 4c) (focusing. The formation of a system
of vortices, with right and left directions of rotation of the

Cc_lrcumference. Taking into account that each jump of phase

is equal to7r, the number of jumps in the phase along this
circumference then yields a value of topological charge. Fig-
ure Ga) shows the spatial distribution of the phase in the
vicinity of the origin for linearly interacting focusing beams

with equal absolute values of the amplitude. Two phase
jumps, each approximately equal 19 can be clearly seen,

so that the topological vortex charge of the corresponding

Poynting vector, is obvious from these figures. The value ofortex is equal to 1. Figure(B) shows the same phase dis-

the magnetostatic potentigd was found atO by a direct
numerical calculation. It is zero in both the ling&igs. 3-5

tribution, but over a larger part of the interaction region.
Note that the motion of the magnetostatic potential in the

and the nonlinear cases, when the absolute values of thécinity of the center can be described as a rotation. There is
amplitudes of all three interacting waves are equal to each localization of the magnetostatic potential along Zhei-

other.
In the case of three beams with shifted centeys# 0) a

rection (in the region of the filnh which is described by the
function included in the relationshifba). The magnetostatic

symmetrical structure of right- and left-rotating vortices is potential inside the ferrite film is the result of interference of

formed aroundD as seen in Fig. (6). In the linear case, for

two waves counterpropagating and forming a standing wave

equal amplitudes of the interacting beams, the unit value oin the Z direction. The phase defects for nonfocused and
topological charge was obtained by direct numerical compufocused interacting beams, respectively, can be called ar-
tation. In the general nonlinear wave case, however, a gegangements of quasiscrew phase dislocations or a set of qua-
metrical method is more convenient. For both focusing andiscrew vortices in a ferrite film. The term quasiscrew is
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FIG. 5. Spatial vortex structure excited by three linear, equal-amplitude, skitedD, i=1,2,3, focused beamga) Spatial distribu-
tion of Reg(x,y); (b) |e(x,y)|% (c) Poynting vector distribution.

meant to convey the fact that a real screw is replaced in thequal to each other will not be true in the vicinity of other
ferrite film by a rotation. If three linegloptical plane waves phase defect points. At the same time, because the ampli-
in an unbounded medium have wave vectors in the samgides of the waves change slowly in time and space it can be
plane, and equal amplitudes, wave numbers, and frequenciesaid, at least for the phase defects seen in Fi(®, 3(b),

a periodic set of screw dislocations occurs. The symmetry ofi(a), and 4b), that being in the neighborhood of the center
the wave structure with a set of phase defects that are vortgjyes them validity. Therefore, even for lossy and dispersive
ces is interesting. For the geometry depicted in Fig. 2, usingrigs. 3a) and 3b)], focused[Figs. 4a) and 4b)], or non-
three waves with equal amplitudes, wave numbers, and fr@jnear (see Figs. 8 and 9 belgvbeams, the structures can be
quencies and initial phases equal®@=0, ®,=27/3, and  yeated as a set of quasiscrew dislocations. As can be seen
d3=41/3, the total magnetostatic potential satisfies the fo"from Eq. (148, and also from the way that the phase is

lowing relationship: determined see Eqgs(1b) and(15)]
@0+ 27/3) = () €*™2, (219

whered, is the polar angle and the relationship describes the

macroscopic symmetry of the structure considered. In dis- D6+ ) =D(6). (21b)
tinction to this, circular symmetry is evident only in the
neighborhood of the vortex axis. For three identical interact
ing, lossless, linear plane waves with equal amplitudes th

analysis works well within the vicinity of any phase defect. cinity of the central point and demonstrates the above phase

If loss, diffraction, nonlinearity, or focusing is present, the R . . .
amplitude of each of the wav)(/es will depegd orF: the coordi-pe”Od'C'ty' Note that Fig. 7 is a small fragment of Fig. 6 so

nates, and Eq143a will be valid only for the vicinity of the it reflects the same structgral symmetry as Fig. 6. Equation
geometrical center of the structure. In the latter case, in th 1b)_ characte_nzes the microscopic symmetry Of, the, struc-
other points of the phase defects shown in Figs), 3(b), ture in the nelghborhood of the phase Qefect geinwvhile

4(a), and 4b), Eq. (149 will be valid only approximately, Eq. (219 characterizes the macroscopic symmetry of the

Figure 7 shows a small fragment of the phase distribution
'with equal phase contours, for three focused linear beams
fith equal amplitude$Figs. 8a) and Gb)] in the close vi-
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of the role of interacting beam asymmetry, when the moduli

069 m R85 of their amplitudes are unequal. The work described here can
0.593%8 — 1.063

[ 0.1250 — 05038
I 03438 - D250
Bl 0=i25 - 03438
Bl -1251 - 08125

-1 750 - 1281

1.531 — 2.000
1063 — 153
05938 — 1.063

[ o.1250 — 0.5938

B 03438 - D.1250
08125 - D3 4I8
-1.281 — 0.E128

-1 750 - -1.281

be put into a broader context by noting that[ 1] (devoted
to nonlinear singular optigsin particular, three-wave inter-
action was considered and the possibility of vortex charge
redistribution was discussed.

Suppose, for simplicity, that only the first two polar
modes are excited, i.e5;,(r, 6) =Ay(r)e?+A,(r)e??, where
the valuesA, , are real and~,(0,0)=0. F, is a function
describing qualitatively a vortex structure, with the center at
r=0. The outcomes of a direct calculation, of the integral of
the phase gradient aren? 37, and 4, respectively, forA,
=0, A;=A,, andA;=0. A more general result can be easily
obtained usingF(r, )=A(r)F1(0)F,(r, 6), where F(6)
=d? Fy(r,0)=1+rq(r)€?, andry(r)=Ay(r)/A(r). A simple
geometrical argument is enough to investigate the phase in-
tegrals forro<1, ro=1, andry>1.

The corresponding vortex charges are 1, 3/2, and 2 in
these cases, so that if the ratio of the amplitudes of the sec-

ond and main polar harmonics can be changearly or
nonlinearly, the vortex charge can also be changed. The
transformations of topological charge during free space
propagation of a light wave, which is a combination of a
Gaussian beam with a multiply charged optical vortex within
a Gaussian envelope, were studied[i%]. In addition, it
interesting to observe that the possibility of generating an
optical vortex with a fractional charge after the diffraction of
a linear optical beam on a thin binary amplitude grating has
already been discussédi6].

In the present calculations, only rather low levels of har-
monics are excited, and they determine the nonlinear coeffi-
cient needed for the envelope equation. The nonlinearity pro-
vides self- and cross interactions of the main harmonic
amplitudes, in the vicinity of the singular points. The higher

For a linear three-wave magnetostatic interaction, definetlarmonics are included only implicitly into the system of
with a suitable relative phase shift, a rotating vortex structureoupled envelope equations through the nonlinear coefficient
has been established in the previous sections. The influen¢®cause the amplitudes of the harmonics are much smaller
of nonlinearity upon the shape of this structure and also thehan the amplitudes of the three main interacting beams. A
vortex charge will now be addressed, together with a studgmall enough nonlinearity will not influence the charge of

the generated vortex. The numerical calculations presented
0.2950 XR below confirm this conclusion.
Figures 8—13 are generated for dimensionless magnetic

(b) - T om)

FIG. 6. (a) Spatial distribution of the magnetostatic potential
phase®d in the neighborhood of the center poit for three equal-
amplitude, linear, focused beantb) Spatial distribution of magne-
tostatic potentiatb for the same parameters as(a), but in wider
spatial region.

VI. INFLUENCE OF NONLINEARITY, UNEQUAL BEAM
AMPLITUDES, AND SHIFTED BEAM CENTERS

0.2925-0.

5125 -- 5.000
4250 -- 6.125
2375 - 4.250

[ osooo - 2a3ts

I -1375 — 05000

Bl -3:250 - -137s

B -:12: — -3250

-7 000 — 5425

0.2850 T T T
-0.0050 -0.0025 0.0000 0.0025 0.0050
X (cm)
. . . 0.2 0.1 oo 0.1 0z
FIG. 7. Contour map fragment of spatial distributi@hown in ¥ (]

Fig. 6) of magnetostatic potential phadein the close vicinity of

the pointO, the geometrical center of the structyshown in Fig. FIG. 8. Nonlinear structure Rg(x,y) for the same parameters
2). The values ofb in radians on the lines of the constant phase areas in Fig. 3a). Dimensionless input beam amplitudéso=U,q
shown by the numbers inside the figure. =U3p=3.
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FIG. 9. Nonlinear structure Rg(x,y) for the same parameters ¥ (cm)
as in Fig. 4a). Dimensionless input beam amplitudéso=U,q
=U3p=2.95. FIG. 11. Spatial distribution of field of the Poynting vector ex-

cited by three shifted, non-equal-amplitude, linear, focused beams.
field amplitudesU; ~2-3; values that are necessary to pro- Absolute values of input beam amplitudes &fgy=U»=2.5, Uso
vide the nonlinear effects described below. Note that further2.
increase of the input amplitudes may lead to a second-order
spin-wave instabilityf 17—-19. The possibility of exciting ex- focused beams lead to a system of right- and left-rotating
change spin waveavith the same frequency as the incident vortices that are symmetrical, regardless of whether they are
beams is not taken into account in the present paper and wilshifted or not. If the linear beams have only S|Ight|y different
be the subject of future work. The nonlinear calculationsabsolute amplitudes, almost symmetric vortex structures are
presented here show a qualitative influence of nonlinearitynaintained and are shown in Figs. 10 and 11. Switching on
on vortex formation due to the three-beam interaction. Thdéhe nonlinearity, for the amplitude values used in the linear
influence of the nonlinearity upon the shape of the spatiaftructures, changes the situation to that shown in Figs. 12
structures can be seen in Figs. 8 and 9, which are computetnd 13. Here it can be seen that the vortex structure formed
with equal absolute values of all nonlinear beam amplitudesty unshifted beams, endowed with different absolute ampli-
They show what happens for cases in which there is absendgdes, shifts only slightly, as a whole, due to nonlinearity. If
or presence of focusing. Comparing Figs. 8 and 9 with Figsthe beam centers are shifted then nonlinearity causes a rather
3(a) and 4a) shows that the nonlinearity leads to nonlinearcomplicated rebuilding of the vortex structure topology, as
two-dimensional diffraction. This causes broadening of theseen by comparing Figs(& and 11 with Fig. 13. Figure 13
region of interaction and this is accentuated for focusedGVE&'S that the nonlinearity causes a rotation of the structure
beams, as can be appreciated by looking at Figs.ahd 9.  as a whole, spatial shifting of the points with phase defects,
The difference between the linear and nonlinear structures igind a rebuilding that includes merging with a neighboring
the absence of focusing is rather less than in the presence B@rt of the structure. Overall, the conclusion is that in the
focusing. Simultaneous asymmetry of the interacting beamabsence of nonlinearity, slightly different amplitudes for the
brings out the most pronounced effect of the nonlinearity. Adnteracting beams permit the symmetry to remain but nonlin-
can be seen from Figs(@ and 5c), equal-amplitude linear earity causes it to disappear. Note that it is also probably

0.33 ] 0.33
0.32 77 02
0.31] 0.31
0.30 - 0.30
E 0.20] £ 0.20
[X]
> 0.28- S 0.28
0.27 {3 0.27 -
0.26 * 0.26 -
0.25 0.25
0.24 . ; . T : . T ) 0.24 41— : ; . . . ; T T
-0.04 -003 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 10.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
¥ {cm) X (cm)

FIG. 10. Spatial distribution of field of the Poynting vector ex-  FIG. 12. Distribution of Poynting vector for the same param-
cited by three unshifted, non-equal-amplitude, linear, focusecdkters as in Fig. 10 but now with a nonlinear interaction of the
beams. Input beam amplitudes &tgy=U,q=2.5,U3,=2.0. magnetostatic beams.
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three-beam interaction with anZ3 phase difference between
the second and first and the third and second beams. If the
centers of the beams are not displaced then Fi@s, 3(c),
10, and 12 show what can happen to focused and nonfocused
beams. Quasiperiodic structures are formed with vortex sin-
gularities and topological charge equal to 1-at. If focused
beams, with displaced centers, interact with each other then a
system of three clockwise-rotating vortices with one counter
clockwise-rotating vortex in the center can be formed, as
shown in Figs. &) and 11.
If the absolute values of the beam amplitudes are equal
then the main effect of the nonlinear diffraction is to broaden
006 004 002 000 002 004 0.06 the interacting structures. For focused beams, a broadening
¥ {cm) of the region of interaction around the central point also oc-
curs. If the moduli of the amplitudes of interacting beams
FIG. 13. Distribution of Poynting vector for the same param-ith shifted centers are different, nonlinearity causes shifting
eters as in Fig. 11, taking into account a nonlinear interaction of theyng a rotation of the structure as a whole. A vortex exists in
beams. the linear case, surrounded by three symmetrical vortices. A
vortex structure of three beams with different absolute values
possible to create vortices using structures containing layersf the input amplitudes changes qualitatively due to nonlin-
with higher nonlinearity than pure yttrium iron gari®iG)  earity. At the same time, no nonlinear change of vortex
films possess, e.qg., ferrite-paraelectric struct{iz€s21]. charge is obtained under the condition of a small level of
Using just visual evidence, presented in the form of thehigher harmonics adopted in the present modeling.
Poynting vector and phase spatial distributions, no points One direction for future investigation is to search for a
have been discovered where, simultaneously, the complexonlinear change in the vortex charge using layered struc-
amplitude of the magnetostatic potential is zero and theures that include materials with higher nonlinear coefficients
phase integral around this point is different from.2n other  such as ferrite-paraelectric-dielectric materials, or just
words, for the linear or nonlinear interaction of three magneparaelectric waveguides, where dispersion is smaller and
tostatic beams, under the condition that there is only an innonlinearity larger than in ferrites. As a result, the effective
significant presence of higher harmonics, the vortex charggeneration of higher harmonics can be expected, and, there-
does not differ from 1 or-1. fore, a nonlinear vortex charge change. Another interesting
possibility is the generation of vortex structures using an
amplitude-dependent group velocity, which leads to the
It has been shown that some stationary vortex structuregropagation of different parts of a pulse, with different ve-
can be excited experimentally in a ferrite film. One suggesiocities and phase defect structure formafidd]. To do this,
tion is that the vortex structure can be exposed by a Brillouirstructures with large nonlinearity and large enough disper-
scattering method22]. These vortex structures are in the sion are necessary. Probably, paraelectric-ferrite structures
technically important centimeter and millimeter ranges. YIG[20] combining the high dispersion of ferrite films and large
or hexaferrite material may be used, but without using superparaelectric nonlinearitf21] would be suitable for this. The
conductivity or an exchange interaction. The main require-control of vortex structure characteristics could be achieved
ment for an experimental arrangement would be to maintaising two counterpropagating pulses that are in antiphase
the necessary difference of phases between the antennas exxd including a relative shifting of their centers, together
citing the three interacting beams. In the future, nonstationwith parametric coupling between them. This kind of para-
ary structures and the combination of vortex excitation withmetric coupling could be provided using a microwave reso-
parametric interaction will be considered. nator[23]. There are indeed a lot of interesting possibilities
On the basis of the present work, linear and nonlineafor centimeter and millimeter range vortex research based
vortex structures can be excited in a ferrite film, using aupon multilayered structures that include ferrite films.
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